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Introduction. We have been working on the following issues:

1. Computations for 2-Dimensional and 3-Dimensional Inverse Scattering Problems

(ISP) for the Helmholtz equation. Convergence analysis of our numerical method for

this equation.

2. Globally convergent numerical methods for 3-D ISP.

3. Numerical method for phaseless 1-D ISP.

4. Mathematical model for light propagation in highly scattering media

(interdisciplinary research effort).

Below we briefly describe these developments. They have been described in detail

in references [41-[6], [81-[17].

1. Convergence Analysis and Computational Experiments for 2-D and 3-D ISPs for the

Helnholtz Equation. See [4]-[6], [8] and [9].

Let fl be a bounded domain in R3 with a dielectric function 1 + e(x), where

6(x) E L`(fl) represents relative fluctuations of the dielectric function, e(x) = 0 outside

of Q and e(x) is unknown inside of fA. Without loss of generality we assume fl C W,

where W is the ball of radius ir/2 with the center at the origin. Let OW be the

spherical boundary of W and S2 be the unit sphere in R3. If v E S2, then eik<x' V> is

the scalar incident planar wave of the frequency k propagating in the direction of the

vector v. Here <., • > is the inner product in R3. Let u(x, v) be the solution of the

forward scattering problem

Au + k2(l + e(x))u = 0 (1.1)

u(x, v)-eik<x'v> + i(x, v) (1.2)

plus Sommerfield radiation conditions.
F-I

The ISP Statement. Let k const. > 0 be fixed. Determine the function e(x) in (1.1)
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assuming that the measurement function V(x, v), v E S2, x E OW is given and the

function u(x, v) satisfies

ulow = W(x, v), Vv• S2  (1.3)

In [14] we proposed a quasi-Newton method for this problem. During this year our

developments in this direction were the following:

a) We derived a completely rigorous proof of convergence of our original algorithm [4],

[6].

b) We tested complicated geometries, rather than just cylinders as it was earlier [9].

Our original code required certain changes to do this.

c) The major effort was devoted to solution of a challenging 3-D, rather than

2-D ISP. (see below)

In our algorithm we represent e(x) in the form of a finite Fourier series,

e(x) = E an ei<n, x> (1.4)
Inl_< N

where N is a fixed integer, N < 2k in 3-D case, and N < V/2k in 2-D case. Hence we

cut high frequency harmonics of e. The algorithm consists in an iterative search of

Fourier coefficients an.

Test #1. [91 As an example of a complex geometry consider e(x) which is non-zero

inside of a non-symmetric cross and a cylinder, see Fig. la. That is

0.01, for V(x1 + 0.27r)2 + N + 0.2r)2 < 0.l5r
(0.01, for 0.6 < x1 < 1 and 0.2 < x 2 < 1.3

0.01,f or o.2 < x, < 1.3 and 0.6 < x2 < 1
j 0, otherwise

We have also included twelve randomly distributed spikes in order to see how random

fluctuations might affect our solution. Results of our computations at N = 10 are

displayed on Figs. lb-ld.
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Fig. lb represents the 3-D view of the computed c; the spikes are removed. Figs. 1c

and Id display views from the "top" or real and computed e respectively.

Computations were made on NAVY CRAY-Y/MP. CPU time was 2 minutes.

In the test #3 we present solution of a 3-D ISP, which was obtained, for the first

time (cf. [2], where computations of a non-symmetric 3-D ISP was stated as a

challenging problem). CPU time was 30 minutes, at N = 7, which is much less than

would be required by other currently available methods.

Test #3. 3-D ISP.

In order to avoid solving of 3-D forward problem, for data simulation we have taken the

ball,

C(X) =0.02, for Jxi < 1.26
0, otherwise

Forward problem (1.1), (1.2) admits an explicit solution on this case. However, we

have never assumed, whatsoever, any kind of symmetry when inverse problem was

being solved.

In order to reduce dramatically the CPU time, we have made a crucial

modification of our original algorithm. Namely instead of using (2N + 1)3 different

directions v we employed some "basic" vectors v. In order to get data for other needed

directions we applied a special interpolation procedure using the fact that other v-s are

sufficiently close with basic ones. Thus this procedure allowed us to use 300 "basic"

directions v instead of (2 . 7 + 1)3 = 3,375 as it would be the case in [4], [5].

Figs. 2a, 2b represent cross-section of real e(x) by two different planes at the

distance h from the center Figs. 2c, 2d display corresponding computed c. Finally on

Fig. 2e we present cross-section of tested (dashed line) and computed (solid line) e(x)

by a straight line through the center. Work on an improvement of this result is
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currently in progress.

2. Globally Convergent Numerical Methods for Hyperbolic 3-D ISP. [8], [11], [12].

This is an entirely new and promising direction of the research of numerical

methods for 3-D ISPs. We hope that these results will lead us to effective working

numerical schemes. There are two major advantages of these methods as compared

with the method for Helmholtz equation: (i) These are "global", rather than "local"

methods. That is the basis of convergence is just an arbitrary fixed compact set, rather

than a "small" ball (in certain Banach space).

(ii) These are "single", rather than many-source methods. That is we consider non-

overdetermined problem with just a single source position.

Single source problems are of much less computations complexity than many-

source problems since they deal volumes of data which are of the order of a

magnitude(s) less than in the case of many sources. The price for these advantages is

two fold: (a) theory of these methods is much more sophisticated; (b) single-source

problems are less informative.

The main tool in this direction is a deep modification of the method of Carleman

estimates [13]. As to informativeness issue, the idea is to work with the data obtained

from different sources by a step-by-step procedure, rather than working with many

sources simultaneously. In this case one would improve the required image step-by-step

and CPU time will be added, rather than mutliplied. Finally, one would deal with a

much less number of sources, which, in principle, should decrease experimental

complexity.

Let T = constant > 0, function a(x) E C2(R3 ) and function u(x, t) is solution of the

Cauchy problem
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utt =Au + a(x)u, in 14 = R3 x (0, T)

ujt=O = 0, utlt=o = 6(x)

Consider cylinder CL = {x2 + xA < r2}, with the boundary w where r0 = constant > 0. Let

R = const., R > r0 , and fn = {IxI < R}\{CL}.

The ISP statement. Determine function a(x) inside of the domain 0 assuming that a(x)

is given inside of CL and the following function ýp(x, t) is given as well

uiw = W'(x, t), (x, t) E w x (0, T) (2.2)

In [8], [11] we constructed a uniformly strictly convex cost functional for this ISP. Thus

global convergence of a number of numerical methods was guaranteed. By the method

[8], [11] one determines a finite number of Fourier coefficients of a function associated

with the wave field u(x, t). A more challenging and complicated problem, however,

consists in determining of a finite number of Fourier harmonics of the unknown

coefficient a(x) itself. During the Spring, Summer and Fall of 1993 we have been

actively working on development of such a numerical scheme. Now this method has

been finally derived [12]. Thus algorithm combines our idea of quasi-reversibility

method [14] with the method of [81, [11].

3. Numerical Method for Phaaless 1-D ISP. [17].

In the classical formulation of ISP for 1-D Schrbidinger equation, one has to

determine unknown potential V(x) from the reflection coefficient R-(k) [3]. In many

important applications, however, only the amplitude IR - (k)12 can be measured. Let

A = {V E LOO(R) f Ln(R); V is real

valued, V(x) - 0 for x < 0}
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Here L'(R) is the weighted L' space

L(R) = {f: f (f(x))(l+ x2)dx <oo

The time-reduced Schr6dinger equation

W" + (k2-_ V(x))- = 0, -<x<oo (3.1)

then has solutions
xkl(X, k) = eikx + R - (k)e -- ikx, x< 0

ST(k)eikx, x--* +00

lk2(x, k)=T(k)e - ikx, x<O (3.2)

~ e - ikx + R + (k)eikx, x-- +0

The ISP Statement. Determine function V E A assuming that the reflection amplitude

r(k) = IR-(k)12, 0_<k < oo (3.3)

is given.

Previously, we have proven uniqueness theorem for the problem (3.1)-(3.3).

Recently, we have developed and tested a numerical method as well [17]. This method

works for the case of a relatively small number of complex zeros of the function R(k).

Fig. 3 represents exact (solid line) and computed (dotted line) potentials V(x).

Computations were made by the algorithm [17]. Currently, we are also working on

some modifications of the idea of [16].

4. Mathematical Model for Light Propagation in Highly Scattering Media. [10].

In the past several years different research groups have been using laser-based

techniques to locate translucent objects in highly scattering media such as sea water,

biological tissues, etc. [19], [20]. In the future, this technique might improve or even

replace conventional X-ray tomography. The core of this kind of imaging, however,

must be solving of full-scale 3-D ISPs, since the only hope to image internal structure of

7



inclusions with a fine resolution lies in applying of sophisticated inverse problems

numerical methods. In particular, we hope that our numerical methods might be

eventually applied to this challenging problem.

The first question which comes in mind, however, consists in the right

mathematical model for this kind of processes. Because of our already developed

algorithms, it would be desirable to have a hyperbolic equation, which would govern

light propagation in highly scattering media. The light emitted from ultrafast laser

pulses (- 100 femtosecond duration) splits into three components in highly scattering

media: ballistic, snake and diffuse [20]. The ballistic photons propagate along straight

lines, just as X-rays. But intensity of the ballistic component is so small that it cannot

be detected. So-called snake photons represent early arriving photons. They propagate

slightly off straight lines and contain a good portion of information about inclusions.

Fortunately, snake photons can be detected. Finally, diffuse photons represent the later

portion of the signal. They have many scattering events before emission from the

media and contain a very little information about inclusions. Overall, all photons,

except of ballistic ones, experience random scattering inside of such kind of media.

Commonly, diffusion equation has been used for description of these processes [1].

The immediate shortcoming of diffusion equation, however, is its prediction that

intensity of the light will be non-zero instantaneously everywhere. Besides, it was

shown in [21] that diffusion equation cannot describe snake photons and that it is not

valid for the thin media. After a long and careful analysis we suggested to use a hybrid

wave-diffusion equation, which is equivalent with the telegraph equation [10]. In fact,

wave-type equations were never used before in this kind of processes, although the

telegraph equation was derived phenomenologically for heat propagation in the gas in

[18, p. 865].
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The telegraph equation for the intensity I(x, t) has the form

-lItt + It-AI+1 I=0 (4.1)

We have also proposed special initial conditions which reflect the collimated nature of

the initial laser beam propagating along the xl-axis. These initial conditions are

Ijt = 6(x) (4.2)

IItt=0 = - 8 C -(x) + ,c6(x) (4.3)

Here the cG6(x) term is included to keep intensity from being negative at t-oo, and 8

is a small positive number (we usually take # = 0.03). We can prove that this term

provides a very small impact until time becomes very large.

In (4.1) c is the speed of light in the media, D = cit/3, is diffusion coefficient, It is

the mean free path of photons, L2 = It~a/ 3 and la is the absorbtion length. In highly

scattering media, such as biological media, usually It = 1 + 3 mm and la > 100 mm.

We have tested validity of the equation (4.1) by comparison of the solution of the

problem (4.1)-(4.3) with the experimental data for a large range of source-detector

distances as well as for two source-detector configurations: (i) "face-to-face", that is

for the case of transmitted light; (ii) perpendicular. Experimental data were obtained

from Prof. R.R. Alfano (City College of CUNY, New York). Our data fitting results

show that while for the thick media both telegraph and diffusion equation provide good

fit with experimental curves, for thin media (< 71t) telegraph equation constantly

provides much better fit.

Figures 4a, 4b, 5a, 5b, 6a and 6b represent comparison of the solutions of diffusion

and telegraph equations (solid lines) with normalized experimental data (dashed lines).

Face-to-face source-detector configuration was chosen in this particular set of

experiments (we also have tested three more tests, and all of them provided similar

results). Diffusion equation under consideration has the form
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•It-M =0

It=o = cb(x)

Experimental data were arranged in such a way that influences of the boundaries of the

media were negligible. Figs. labeled "a" and "b" represent fitting by the telegraph and

diffusion equations respectively. In this set of experiments a medium with 1 - 0.55mm

and 1 = 405 nun was taken. Here 1t and eta axe parameters 9t and la obtained by the

fitting by diffusion equation for thick media. In using telegraph equation we discovered

that parameters It and la should depend on the source-detector configuration. This is

due to mixing up of wave and diffusion modes. Another explanation of this

phenomenon is that in non-stationary kinetics these parameters should depend on

photons momentum. This situation was predicted in [18, pp. 179-180].

Figs. 4a, 4b IxI/14 = 18.18, that is the media is thick. On Figs. 5a, b IxI/4 - 7 27;

on Figs. 6a, b Ix1/ ,- 5.45, and IxJ1/ =- 3.63 on Figs. 7a, b. As we clearly see from

these Figs. telegraph equation provides a much better fit for thin media with Ix//4 < 7.

One way of improvement of this model lies in working with convoluted data for

I(x, t) rather than with I(x, t) itself. This is especially true for thin media because in

fact streak camera convolutes the data, and it has 10 picosecond resolution only.

Another way, might consist in working directly with more general transport equation.

But new numerical methods for ISP need to be derived in this case, which might open a

new direction of our research. Overall, we have undertaken a significant effort in

theoretical physics working on this issue. Concurrently, we consider possibility of

applying of our numerical methods for ISP to the problem of imaging of inclusions

hidden in highly scattering media. Thus we should work with the telegraph equation,

rather than just with the wave equation (3.1). Careful analysis of our algorithms shows

that they can be modified for this case.
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Figure Captions
Fig. la Test #1 3-D view on the test coefficient e(x).

Fig. lb Test #1. 3-D view on the computed coefficient c(x).

Fig. ic Test #1 View from the "top" on the test coefficient e(x).

Fig. ld Test #1 View from the "top" on the computed coefficient e(x).

Fig. 2& Test #2 Cross-section of the test coefficient c(x) by the phase at h =0 from
the center.

Fig. 2b Test #2 Cross-section of the test coefficient e(x) by the plane of h = 0.26 from
the center.

Fig. 2c Test #2 Cross-section of computed c(x) by the plane at h = 0 from the center.

Fig. 2d Test #2 Cross-section of computed e(x) by the plane at h = 0.26 from the
center.

Fig. 2d Test #2 Cross-section of tested (dashed line) and computed (solid line) e(x)
by a straight line through the center.

Fig. 3 Phaseless 1-D ISP. Exact (solid line) and computed (dashed line) potential
V(x).

Fig. 4a Telegraph equation solution (solid line) and experimental data (dashed line)
for )x)/pt = 18.18.

Fig. 4b DiffusiozA equation solution (solid line) and experimental data (dashed line)
for Ixi/I = 18.18.

Fig. 5a Telegraph equation solution (solid line) and experimental data (dashed line)
for IxI/Pt = 7.27.

Fig. 5b DiffusioiA equation solution (solid line) and experimental data (dashed line)for IxI/1't = 7.27.

Fig. 6a Telegraph equation solution (solid line) and experimental data (dashed line)
for IxI/I = 5.45.

Fig. 6b Diffuion equation solution (solid line) and experimental data (dashed line) forIxl/?t= 5.45.

Fig. 7a Telegra.h equation solution (solid line) and experimental data (dashed line)
for lxi/ -= 3.63.

Fig. 7b Diffu,@ion equation solution (solid line) and experimental data (dashed line) for
jxl/It = 3.63. 13
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